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Abstract

A search is performed for W′ bosons decaying to a top and a bottom quark in the all-
hadronic final state, in proton-proton collisions at a center-of-mass energy of 13 TeV.
The analyzed data were collected by the CMS experiment between 2016 and 2018 and
correspond to an integrated luminosity of 137 fb−1. Deep neural network algorithms
are used to identify the jet initiated by the bottom quark and the jet containing the de-
cay products of the top quark when the W boson from the top quark decays hadroni-
cally. No excess above the estimated standard model background is observed. Upper
limits on the production cross sections of W′ bosons decaying to a top and a bottom
quark are set. Both left- and right-handed W′ bosons with masses below 3.4 TeV are
excluded at 95% confidence level, and the most stringent limits to date on W′ bosons
decaying to a top and a bottom quark in the all-hadronic final state are obtained.
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1 Introduction
The CERN LHC has strengthened the validity of the standard model (SM) of particle physics
by providing a large volume of data to be compared with theoretical predictions. The exis-
tence of new physics beyond the SM, however, is needed in order to explain several observed
phenomena, including the indications for the existence of dark matter, the origin of nonzero
neutrino masses, and the baryon asymmetry of the universe. Also, an explanation of the fine
tuning required for the insensitivity of the Higgs boson mass to quantum corrections in the SM
is one of the important theoretical quests in particle physics. Extensions of the SM, conceived
to overcome these limitations, include theories proposing a new spin-1 gauge boson W′, a color
singlet with an electric charge of ±1. The W′ boson appears, for example, in left-right symmet-
ric models [1, 2], in models with extra spatial dimensions [3], and in little Higgs models [4].
Several of these models predict W′ bosons having either right-handed or left-handed charged
current interactions. In the latter case, interference with SM single top quark production can
be present. A model-independent description of such processes can be found in [5]. Some
theoretical models, for example [6–8], assume a preferential coupling of a W′ boson to the
third-generation fermions, which motivates the search for a W′ boson decaying to a top and a
bottom quark.

The first searches for a W′ boson decaying to a top and a bottom quark were conducted by
the CDF and D0 experiments at the Tevatron [9, 10] in proton-antiproton collisions, followed
by those of the ATLAS and CMS experiments at the LHC using data from proton-proton (pp)
collisions [11–16]. In the previous searches for W′ bosons in all-hadronic decay modes, the CMS
experiment excluded right-handed W′ bosons with masses less than 2 TeV at 95% confidence
level (CL) at

√
s = 8 TeV, using data corresponding to an integrated luminosity of 19.7 fb−1 [14].

The ATLAS experiment excluded right- (left-)handed W′ bosons below 3.0 (2.9) TeV at
√

s =
13 TeV using data collected in 2015 and 2016, corresponding to an integrated luminosity of
36.1 fb−1 [15]. The search performed by the CMS experiment on a similar data set, considering
only leptonic final states from the t → bW → blν decay chain, excluded right- (left-)handed
W′ bosons of masses roughly below 3.6 (3.4) TeV at 95% CL [16].

In this letter, we search for a W′ boson decaying to a top and a bottom quark in the all-hadronic
final state, where the signature is an excess of events over a smoothly falling background in the
invariant mass spectrum of top and bottom quark candidates (mtb) in the range 1–4 TeV.

The main SM background processes from LHC pp collisions that can mimic the final state
sought in this search are the production of multijet events due to quantum chromodynam-
ics (QCD) interactions, the production of a top quark-antiquark pair (tt), and the electroweak
production of a single top quark associated with a bottom quark or a W boson. As none of
the background processes involve a heavy resonance in the s channel, they result in smoothly
falling mtb spectra.

Most of the top quarks in decays of W′ bosons with masses greater than 1 TeV have large trans-
verse momentum (pT), and their subsequent decay products are clustered into a single jet of
particles. This requires the use of techniques based on jet substructure [17, 18] and machine
learning [19] algorithms for the identification of the jets due to top quark decay (t tagging)
that significantly reduce the background from multijet production in QCD in the case of an
all-hadronic final state. The jets identified as coming from such highly Lorentz-boosted top
quarks are referred to as t-tagged jets. This search makes use of the latest advancements in
CMS in bottom-quark tagging [20] as well as top-quark tagging [21] involving a deep neu-
ral network (DNN). The study is based on data corresponding to an integrated luminosity of
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137 fb−1 collected by the CMS experiment in pp collisions at
√

s = 13 TeV from 2016 to 2018.

Tabulated results are provided in HEPDATA [22].

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal di-
ameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel
and silicon strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a
brass-and-scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap
sections. Forward calorimeters extend the coverage in pseudorapidity (η) provided by the bar-
rel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the
steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector,
together with a definition of the coordinate system used and the relevant kinematic variables,
can be found in Ref. [23].

The silicon tracker measures charged particles within the range |η| < 2.5. It consists of 1440
silicon pixel and 15 148 silicon strip detector modules. In 2017, an additional layer was added
in both the barrel and endcap regions of the pixel detector and the number of silicon pixel
modules increased to 1856. For nonisolated particles with 1 < pT < 10 GeV and |η| < 1.4, the
track resolutions are typically 1.5% in pT and 25–90 µm and 25–75 µm in the transverse impact
parameter in 2016 and 2017 onwards, respectively, whereas the resolution in the longitudinal
impact parameter is 45–150 µm [24, 25].

Events of interest are selected using a two-tiered trigger system [26]. The first level (L1), com-
posed of custom hardware processors, uses information from the calorimeters and muon de-
tectors to select events at a rate of around 100 kHz. The second level, known as the high-level
trigger (HLT), consists of a farm of processors running a version of the full event reconstruction
software optimized for fast processing that reduces the event rate to around 1 kHz before data
storage.

3 Object reconstruction
The CMS particle-flow algorithm [27] aims to reconstruct and identify individual particles in
an event with an optimized combination of information from the various elements of the CMS
detector. The reconstructed vertex with the largest value of summed physics-object p2

T is taken
to be the primary pp interaction vertex. The energy of photons is obtained from ECAL clusters
that have no associated track. The energy of electrons is determined from a combination of
the electron momentum at the primary interaction vertex as determined by the tracker, the
energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons
spatially compatible with originating from the electron track. The energy of muons is obtained
from the curvature of the corresponding track as determined using the tracker and the muon
system. The energy of charged hadrons is determined from a combination of their momentum
measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for
the response function of the calorimeters to hadronic showers. Finally, the energy of neutral
hadrons is obtained from the corresponding corrected ECAL and HCAL energy deposits.

For each event, hadronic jets are clustered from these reconstructed particles (particle-flow can-
didates) using the infrared- and collinear-safe anti-kT algorithm [28] with distance parameters
0.4 (AK4 jets) and 0.8 (AK8 jets), as implemented in the FASTJET package [29]. The AK4 and
AK8 jets are used to identify the bottom quark and the hadronically-decaying top quark, re-
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spectively, from a W′ boson decay. The distance between two particles in the η-φ plane, where
φ is azimuthal angle in radians, is defined as ∆R =

√
(∆η)2 + (∆φ)2. The jet momentum is de-

termined as the vectorial sum of all particle momenta in the jet, and is found from simulation
to be, on average, within 5–10% of the momentum of the particle-level jets reconstructed using
stable particles (lifetime > 30 ps), excluding neutrinos, for pT > 50 GeV and rapidity |y| < 2.5.
Additional pp interactions within the same or nearby bunch crossings (pileup) can result in ad-
ditional tracks and calorimetric energy depositions, increasing the apparent jet momentum. To
mitigate this effect, tracks identified as originating from pileup vertices are discarded before jet
reconstruction. For AK4 jets, an offset correction [30] is applied to correct for remaining pileup
contributions [31]. For AK8 jets, the pileup per particle identification (PUPPI) algorithm [32] is
used to mitigate the effect of pileup at the reconstructed particle level. It has been shown that
the PUPPI algorithm improves the resilience of jet substructure observables against pileup [33].

Additional selection criteria are applied to each jet to remove those potentially dominated by
instrumental effects or reconstruction failures [34]. These criteria are the following: the fraction
of the jet energy carried by neutral hadrons and photons should be less than 90%, the jet should
have at least two constituents, and at least one of those should be a charged hadron. These
requirements remove approximately 0.5% of jets selected for analysis, with negligible loss of
genuine jets.

Jet energy corrections are derived from simulation so that the average measured energy of jets
is the same as that of the corresponding particle-level jets. Measurements of the momentum
balance in dijet, photon+jet, Z+jet, and multijet events are used to determine any residual dif-
ferences between the jet energy scale (JES) in data and simulation, and appropriate corrections
are made [31]. Jet energy correction factors are derived using this methodology for both AK4
and AK8 jets. The jet energy resolution (JER) is obtained from a dijet balance technique [35]. To
match the JER in data and simulation, an energy smearing is added to the AK4 and AK8 jets in
simulation.

3.1 Identification of jets from bottom quarks

A DNN-based tagger, DEEPJET [20], is used for the b tagging of AK4 jets, utilizing information
from the tracks, neutral particles, and the secondary vertices within the jet. This tagger also
provides multiple outputs, such as whether the input jet is consistent with a jet initiated from
one or more b quarks, one or more c quarks, light quarks, or gluons.

The thresholds used for the DEEPJET b tagger correspond to a mistag rate for jets initiated by
light quarks or gluons at a pT > 500 GeV of approximately 5% for data and simulated samples
in 2016 and 1% in 2017 and 2018. This choice of threshold corresponds to an efficiency of
approximately 75 (60)% at pT = 500 GeV and 65 (50)% at pT = 1000 GeV for jets initiated by b
quarks in the barrel (endcap) region. To match the shape of the DEEPJET discriminator in data
and simulation, corrections as a function of the pT and η of AK4 jets, derived using samples
enriched in dileptonic tt events for the b and c quark-initiated jets, and Z+jets events for the
jets initiated by light quarks and gluons, are applied in simulation. The b tagging performance
is better in 2017–2018 than in 2016 because of the addition in 2017 of new layers in the pixel
detector of the CMS tracker close to the interaction point, in both the barrel and endcap regions.

3.2 Identification of jets from top quarks

The top quark arising from the decay of a heavy W′ boson has a large Lorentz boost, and its
decay products are expected to be captured within a jet with a large distance parameter. Hence
AK8 jets are used to identify t-tagged jets. The key observables for the selection of AK8 jets
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resulting from top quark decay are as follows:

• Groomed jet mass: grooming is a procedure for the removal of soft radiation clus-
tered into the jet, which mitigates effects from initial- and final-state radiation, un-
derlying event [36], and pileup interactions. Grooming results in a proportionally
larger reduction in the mass of jets from light quarks or gluons with respect to gen-
uine top quarks.

• Substructure of the jet: three dense clusters of energy are expected inside the jet,
associated with the b quark and the hadronic decay of the W boson, whereas a jet
originated from a light quark or gluon is generally characterized by a single cluster
of energy.

• Displaced vertices: the presence of at least one displaced vertex is expected from the
decays of b hadrons.

The soft drop algorithm, a generalization of the modified mass drop algorithm [37, 38], with
angular exponent β = 0, soft cutoff threshold zcut = 0.1, and characteristic radius R0 = 0.8 [39]
is used to groom the AK8 jets, and the corresponding groomed mass, known as the soft-drop
mass (mSD), is required to be within a window of 105–210 GeV for a jet to be t-tagged. In
this algorithm, the constituents of the AK8 jets are reclustered using the Cambridge–Aachen
algorithm [40, 41] and the relative pT between the successive clusters of particles merged during
the jet clustering is checked to remove soft, wide-angle particles from the jet.

The latter two of the features mentioned above are incorporated in a DNN designed to identify
a jet arising from top quark decay. The DNN based t tagging algorithm exploited in this study,
henceforth referred to as the DEEPAK8 tagger, has been studied extensively in CMS [21]. This
algorithm uses up to a hundred particles (selected in descending order of pT) in an AK8 jet,
incorporating six kinematic variables (pT, η, φ, ∆R from the jet axis, ∆R from the axes of two
soft-drop subjets) for each of the particles and also exploits the features of the tracks (quality,
displacement, etc.), and properties of secondary vertices associated with the jet. A relative score
is assigned to the jet by the DEEPAK8 tagger specifying how likely the jet is to have originated
from the decay products of a top quark rather than from a light quark or gluon. A recursive
neural network based approach is used to decorrelate the tagger performance from the jet mass.

The threshold used on the DEEPAK8 tagger score corresponds to a rate of incorrectly tagging
jets originated from light quarks or gluons, called mistag rate of 0.5%. This choice of threshold
corresponds to an efficiency of approximately 35–45%, in the phase space of this analysis, to
identify the jets initiated by top quarks. The efficiency of the DEEPAK8 tagger is measured
in single-muon events enriched with semileptonic tt production, and increases with jet pT.
Corrections based on the pT of AK8 jets are applied in simulation to match the efficiency of the
t tagging algorithm in data [21].

4 Data and simulated samples
The data used in this search are from pp collisions at

√
s = 13 TeV collected by the CMS exper-

iment from 2016 to 2018, corresponding to an integrated luminosity of 137 fb−1.

Monte Carlo simulations are used to model the W′ boson signal and the background sources
relevant to this analysis. Background estimates for tt events are taken primarily from sim-
ulation, but also include a correction derived from data. Background estimates for multijet
production are taken entirely from data; simulated multijet samples are used for cross-checks.
The smallest background considered is from single top quark events, and it is estimated purely
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from the simulation.

The signal samples are generated at leading order (LO) using the COMPHEP v4.5.2 genera-
tor [42]. Signal samples are generated separately for left- and right-handed W′ bosons with
masses between 1–4 TeV in steps of 100 GeV. The width of the W′ boson in all of the generated
samples is∼3% [5]. The cross sections of the signal samples are scaled to next-to-leading-order
(NLO) accuracy using a K factor of 1.25 [43, 44]. The value of the ΛQCD parameter is taken to
be 165.2 MeV in the signal samples.

The POWHEG 2.0 generator [45–47] is used to generate tt events at NLO in perturbative QCD [48].
For the normalization of the tt sample, the production cross section calculated at next-to-next-
to-leading order (NNLO) with the resummation of soft gluons at next-to-next-to-leading log-
arithmic precision [49] is used. Event generation for the production of a single top quark in
the t channel [50] and in association with a W boson [51], is performed with the POWHEG 2.0
generator as well. The sample of events with a single top quark produced in association with
a W boson [51] is normalized to the NNLO cross section [52]. Events with the production of
a single top quark in the s channel are generated at NLO using MADGRAPH5 aMC@NLO [53],
where version 2.2.2 is used for 2016 and version 2.4.2 is used for the 2017 and 2018 data-taking
eras, and top quark decays are simulated with MADSPIN [54]. The QCD multijet events are
produced with the MADGRAPH5 aMC@NLO generator at LO with up to four outgoing partons
in the final state.

Simulated tt and single top quark samples in 2016 make use of NNPDF3.0 [55] NNLO par-
ton distribution functions (PDFs), with the strong coupling constant αS(MZ) set to 0.118, to
describe the momentum distribution of partons inside the colliding protons. The NNPDF3.0
LO PDFs and are used in producing simulated multijet samples in 2016. The NNPDF3.1 [56]
NNLO PDFs are used to simulate tt , single top quark, and multijet samples in 2017 and 2018.
Simulated signal samples use the CTEQ6L1 [57] LO PDF set.

Generated partons undergo parton showering and hadronization using PYTHIA v8.212 [58].
For the simulated multijet sample, the matching of PYTHIA to MADGRAPH5 aMC@NLO is per-
formed in the MLM [53] schemes. In the case of the samples with tt and single top quark
production, POWHEG and MADGRAPH5 aMC@NLO are matched to PYTHIA using the FxFx [59]
scheme. The underlying event activity in each sample, except for the QCD multijet and W′

boson signals in the 2016 era, is simulated using the CP5 tune, which is derived by tuning
the model parameters for multiple parton interactions in PYTHIA using minimum bias data
collected by the CMS experiment [60]. For the simulated QCD multijet events and W′ boson
signals in the 2016 era, the underlying event tune is CUETP8M1 [61]. For all samples, in order
to match the pileup conditions in data and simulation, a weighting is performed in simulation
based on the value of the total inelastic cross section, which is taken to be 69.2 mb [62]. The
generated samples are processed through the CMS detector simulation based on GEANT4 [63],
using the same reconstruction algorithms as data.

5 Event selection
The trigger criteria chosen in this analysis exploit the large amount of hadronic activity ex-
pected in signal events. At L1, a combination of several criteria consisting of requirements on
the pT of AK4 jets or HT, defined as the scalar pT sum of all of the AK4 jets in the event with
pT > 30 GeV and |η| < 3.0, is applied to select the events. In the HLT, a set of trigger conditions
is applied, selecting events that meet at least one of the following requirements:
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• there is at least one AK4 or AK8 jet above a pT threshold of 450 (500) GeV for the
data-taking period 2016 (2017 and 2018);

• there is at least one AK8 jet that has a pT greater than 360 or 420 GeV in the data-
taking periods of 2016 or 2017 and onwards, respectively, and a groomed mass of at
least 30 GeV, where a trimming [64] algorithm is used for jet grooming;

• HT is greater than a threshold that varied between 800 and 1050 GeV depending on
the data-taking period and instantaneous luminosity;

• the scalar pT sum of all of the AK8 jets with pT > 150 (200)GeV and |η| < 2.5 is
greater than 700 (900) GeV in 2016 (2017 and 2018), and at least one of the AK8 jets
has a groomed mass of at least 50 GeV.

Events with at least one isolated electron or muon with pT > 30 GeV are rejected, where the
condition for electron and muon identification corresponds to approximately 90 and 95% ef-
ficiency for a genuine electron or muon, respectively. Events with at least one AK8 and one
AK4 jet, both with pT > 550 GeV and |η| < 2.4, where the AK8 and AK4 jets are separated
by ∆R ≥ 1.2, are considered for the analysis. The AK8 jet with the highest t tagging score is
taken as the top quark candidate jet. As the top quark and bottom quark from W′ boson de-
cays are expected to be produced in a back-to-back topology, the AK4 jet with the highest pT
which satisfies ∆φ > π/2 with respect to the top quark candidate jet is taken to be the bottom
quark candidate jet. If an AK8 jet is present within ∆R < 0.4 of the b quark candidate jet, it
is referred to as the AK8 jet associated with the b quark candidate jet. The pT thresholds of
the top quark and bottom quark candidate jets are chosen such that the triggers used are more
than 99% efficient for the selected events. The efficiency of the triggers has been measured in
data and simulation with respect to a reference trigger, which requires the event to have at least
one muon, and differences between the two are found to be within 0.1% in the phase space of
selected events. Therefore, no correction is applied to the simulated samples.

A further selection criterion is applied to reduce the contamination from the tt background.
After the top and bottom quark candidate jets are selected, if the AK8 jet associated with the
bottom quark candidate exists and it has mSD greater than 60 GeV, the event is discarded. This
requirement is imposed to reject bottom quark jets from the hadronic decay chain of top quarks.

6 Event categorization and background estimation
After applying the event selection described in Section 5, events are further divided into re-
gions, depending on whether the top or bottom quark candidate jets pass or fail the tagging
requirements, for the estimation of multijet background. The following naming convention is
used for the phase space division:

• t: top quark candidate AK8 jet;

• b: bottom quark candidate AK4 jet;

• t tagging pass or fail: t passes or fails the threshold on the t tagging score;

• b tagging pass or fail: b passes or fails the threshold on the b tagging score.

The signal region SR is defined by requiring the top quark candidate jet to pass both the mSD
and the t tagging score requirement and the bottom quark candidate jet to pass the threshold on
the b tagging score. The control region SR′ is defined with the same conditions on the top quark
candidate jet as in the SR, but the bottom quark candidate jet is required to fail the requirement
on the b tagging score. The control regions CR1 and CR1′ are similar to the regions SR and SR′,
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respectively, apart from the mSD requirement on the top quark candidate jet, which is changed
as indicated in Table 1. The validation region VR and other control regions VR′, CR2 and CR2′

are defined by the same criteria used to build SR, SR′, CR1, and CR1′, respectively, and differ
only in the t tagging condition. An overview of the regions used in the analysis is given in
Table 1.

Table 1: Regions of parameter space used in the analysis. The mSD and t tagging refer to the soft
drop mass and the DEEPAK8 t-tagger score requirements of the top quark candidate AK8 jet.
The b tagging refers to the DEEPJET b-tagger score requirement of the bottom quark candidate
AK4 jet.

Region mSD t tagging b tagging Purpose
SR ∈ [105, 210]GeV pass pass Signal extraction
SR′ ∈ [105, 210]GeV pass fail Multijet bkg. estimation in SR
VR ∈ [105, 210]GeV fail pass Validation of bkg. estimation
VR′ ∈ [105, 210]GeV fail fail Multijet bkg. estimation in VR
CR1 <105 GeV pass pass Extrapolation of multijet bkg.
CR1′ <105 GeV pass fail from SR′ to SR
CR2 <105 GeV fail pass Extrapolation of multijet bkg.
CR2′ <105 GeV fail fail from VR′ to VR

The criteria on mSD and t tagging score of the top quark candidate jet and b tagging score
of the bottom quark candidate jet are chosen to achieve maximum sensitivity to a W′ boson
signal in the SR, where the multijet background constitutes 85–90% of the total background,
whereas tt and single top quark production contribute 5–8 and 2–5%, respectively. For a right-
handed W′ boson of mass 2 TeV, the signal selection efficiency, defined as the fraction of the
simulated events with the production of a W′ boson decaying into a top and a bottom quark
in the all-hadronic final state falling within the SR, is approximately 8% in 2016 and 9% in
2017 and 2018. The efficiency for selecting the signal events with a right-handed W′ boson of
mass 4 TeV is about 5% in all years. For left-handed W′ bosons, the signal selection efficiency
is approximately 5% for a 2 TeV resonance mass and decreases to 0.1% for a 4 TeV resonance
mass. The large difference between the signal selection efficiency for left-handed and right-
handed W′ bosons, especially for high resonance masses, is due to the interference with single
top quark production in the case of left-handed W′ bosons, which results in a larger number of
events at low energy that tend to fall outside the acceptance of the SR.

The control regions CR1 and CR1′ are used to derive the b tagging pass-to-fail ratio (Rp/f) of the
b quark candidate jet. The ratio Rp/f obtained from CR1 and CR1′, and the event yield in the
control region SR′ are used to estimate the multijet background in the SR. The technique used to
estimate the multijet background is cross-checked in the VR, where the multijet background is
computed using the regions CR2, CR2′, and VR′. The parton flavor composition of the b quark
candidate jet has been studied using simulated samples and has been found to be comparable
between the SR and the CR1 used to derive Rp/f. The same comparability has been verified for
VR and CR2.

The ratios Rp/f are obtained by dividing the mtb spectrum obtained in CR1 by that from CR1′,
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and similarly the mtb spectrum in CR2 by that in CR2′, as shown in Eq. (1):

R1
p/f(mtb) =

CR1
CR1′

,

R2
p/f(mtb) =

CR2
CR2′

.
(1)

The ratios R1
p/f and R2

p/f, obtained as functions of mtb , are parameterized using a second-order
polynomial. The ratios Rp/f are also fitted with a bifurcating function, defined in Eq. (2), to
estimate the systematic uncertainty associated with the choice of the parameterization.

fp/f(mtb) =

a1 + a2

(
mtb − a0

)
+ a3

(
mtb − a0

)2
, mtb < a0

a1 + a2

(
mtb − a0

)
+ a4

(
mtb − a0

)2
, mtb≥a0

. (2)

The bifurcating function has five parameters: a0,1,2,3,4.

The values of Rp/f are measured in three regions defined by the η of the b quark candidate jet:
|η| < 0.5, 0.5 ≤ |η| < 1.4, 1.4 ≤ |η| < 2.4, and are multiplied by the event yield in the regions
SR′ and VR′ to obtain the multijet background in the SR and VR, respectively. This is expressed
in Eq. (3), where f 1

p/f and f 2
p/f represent the fitted functions for R1

p/f and R2
p/f, respectively.

Multijet background in SR = f 1
p/f(mtb) SR′;

Multijet background in VR = f 2
p/f(mtb) VR′.

(3)

The value of f 1
p/f varies from 10 to 15% in 2016 and 2 to 6% from 2017 onwards, and the value

of f 2
p/f ranges from 3 to 12% in 2016 and 1 to 2% from 2017 onwards. Simulated tt and single

top quark backgrounds are subtracted from the data to calculate the yields in all regions.

In both data and simulation, it is observed that for AK4 jets that pass the threshold on the b
tagging discriminator, the associated AK8 jets have a different shape for the mSD distribution
compared to the case where AK4 jets fail the b tagging condition. This can affect the multijet
mtb spectrum extrapolated from the regions SR′ and VR′, leading to discrepancies with the SR
and VR, respectively. To take this effect into account, multiplicative corrections are applied to
Eq. (3). For the estimate of the multijet background in the SR, the correction is derived using
the ratio of mSD spectra of the AK8 jets associated with the b quark candidate in CR1 and CR1′,
and for the background in the VR it is obtained from CR2 and CR2′.

The multijet background estimation procedure is first performed on a simulated QCD multijet
sample, and the estimated mtb distribution is obtained in the regions SR, VR, CR1, and CR2.
The difference between the extrapolated and predicted mtb spectra in simulation is taken as a
systematic uncertainty.

A closure test is performed in the VR by comparing the estimated multijet mtb spectrum to that
observed in data, after subtracting simulated tt and single top quark backgrounds. The same
test is performed in CR1 and CR2. The predicted and observed distributions agree within 1–2%
in all cases.

To check the consistency of the simulated tt background with data, a control region is selected
that satisfies all of the criteria in the SR, but requires that the AK8 jet associated with the b quark
candidate jet has mSD in the [105, 210]GeV window and passes the threshold on the DEEPAK8
tagger score. This region is orthogonal to all of the regions specified in Table 1 and is enriched
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in tt events where both the top quarks decay hadronically, which constitute approximately
80% of the events in this region. The ratio between the mtb spectra in data and simulation
is fitted with a first-order polynomial to derive a correction that is applied to the simulated
tt background. The statistical uncertainties in the linear-fit parameters are used to derive the
systematic uncertainty in this data-based correction applied to the simulated tt background.

7 Systematic uncertainties
We consider several sources of systematic uncertainty that cover experimental effects, uncer-
tainties due to the extraction of the multijet background, and uncertainties in the predicted tt
and single top quark backgrounds. These sources and their sizes in the SR are as follows:

• Fit to Rp/f: The impact of the uncertainty in Rp/f on the estimated multijet back-
ground is computed using the covariance matrix of the fit parameters, and ranges
from 2 to 8%.

• Choice of function describing Rp/f: The difference between the multijet background
estimated using the default second-order polynomial and that obtained with the
bifurcating function is less than 1%. The value of this difference is taken to be the
associated uncertainty.

• Closure: The uncertainty is taken to be the difference between the estimated multijet
background obtained by using Rp/f in simulation and the predicted yield in simula-
tion. It ranges from 4 to 8%.

• b quark candidate mSD correction: The uncertainty is taken to be half of the difference
between the estimated multijet background with and without applying the kine-
matic correction based on the mSD of the AK8 jet associated with the b quark candi-
date jet. It is up to 6% in magnitude.

• JES: The uncertainty applies to both AK4 and AK8 jets, and affects all of the back-
grounds and the W′ boson signal. It is taken to be fully correlated between AK4 and
AK8 jets, and has a value rising to 5% at high mtb .

• JER: The uncertainty is taken into account both for simulation-based backgrounds
and signal. It is taken to be fully correlated between AK4 and AK8 jets, and has a
value ranging up to 8%.

• b tagging scale factor: The uncertainty in the correction applied in simulation to match
the shape of the DEEPJET discriminator in data and simulation has a value of up to
30%.

• t tagging scale factor: The uncertainty in the correction applied in the simulation to
match the efficiency of the DEEPAK8 discriminator in data and simulation has a
value of 4%.

• Trigger timing correction: During the 2016 and 2017 data taking, a gradual shift in
the timing of the inputs of the ECAL hardware level trigger in the region of |η| >
2.0 caused a specific trigger inefficiency. To take this effect into account, correction
factors are computed from data and applied to the simulated samples corresponding
to the 2016 and 2017 data taking periods. The uncertainty in this correction is less
than 5% over the entire mtb range.

• Pileup: The value of the pp total inelastic cross section that is used in the simula-
tion of pileup events is varied upwards and downwards from its assumed value of
69.2 mb by its uncertainty of 4.6% [62]. The difference in yields is taken as the pileup
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uncertainty, and is less than 5%.

• Scale: The impact of missing higher-order terms in perturbative QCD is evaluated
by changing the renormalization (µR) and factorization (µF) scales in simulation. A
six-point scheme is used, where yields are obtained in simulation by scaling the
pairs (µR, µF) by the following combinations: (1, 0.5), (0.5, 1), (1, 2), (2, 1), (0.5, 0.5),
and (2, 2). The envelope of the variations as compared to the nominal choice of
(µR, µF) = (1, 1) is taken as the scale uncertainty. This reaches up to 20% for tt and
single top quark backgrounds.

• PDF: The parameters that characterize the PDFs are determined from different ex-
periments by fitting the theory prediction to the experimental data. Thus the PDF
parameters are affected by the uncertainties from the experimental measurements,
modeling, and parameterization assumptions. In this analysis, simulated tt and
single top quark backgrounds are obtained for each of one hundred replicas of the
NNPDF3.1 NNLO PDF set, and the PDF uncertainty is determined from the stan-
dard deviation of the yields in each bin of the mtb distribution for the tt and single
top backgrounds. For the W′ boson signal sample, the PDF uncertainty is deter-
mined using forty-five eigenvectors of the Hessian matrix [65]. The PDF uncertainty
size is within 5% for tt and single top quark backgrounds and increases up to 20%
for a W′ boson signal of high mass.

• tt normalization and slope: The uncertainties in the linear fit parameters used to de-
scribe the data-based correction for the tt background range from 5% at low–mtb to
25% at high–mtb .

• Integrated luminosity: The individual integrated luminosities of the 2016, 2017, and
2018 data-taking periods have uncertainties in the range 2.3–2.5% [66–68]. The to-
tal Run 2 (2016–2018) integrated luminosity has an uncertainty of 1.8%, where the
improvement in precision reflects the (uncorrelated) time evolution of various sys-
tematic effects.

• tt cross section: This results in an uncertainty of 3.9% [69] in the normalization of the
tt background.

• Single top quark cross section: There is an uncertainty of 12.8% in the single top quark
production cross section, averaged between the production in the t channel [70] and
production in association with a W boson [71]. This results in a corresponding un-
certainty in the normalization of the single top quark background.

Since the multijet background is dominant, the uncertainties in Rp/f and in JES are the domi-
nant sources of systematic uncertainty.

Systematic uncertainties corresponding to the tt cross section, single top quark cross section,
scale, and PDF are taken to be fully correlated, and the uncertainty in the integrated luminosity
is taken to be partially correlated between different years of data taking. All other systematic
uncertainties are taken to be uncorrelated between the three data-taking eras.

8 Results
The signal and expected background mtb distributions are compared with data, and a binned
maximum-likelihood fit based on Poisson statistics is applied to measure the W′ boson yield.
Each source of systematic uncertainty is treated as a nuisance parameter [72]. The nuisance
parameters corresponding to the systematic uncertainties that affect only the normalization
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of the backgrounds and the signal are assumed to follow log-normal distributions, and those
that affect the normalization as well as the shape are described by Gaussian distributions. The
expected number, Nexpected, of W′ boson signal events in an mtb bin is given by

Nexpected = σW′BLεA, (4)

where σW′ is the production cross section of the W′ boson, B is the branching fraction of a W′

boson decaying to a top and a bottom quark, followed by the hadronic decay of the W boson
in the top quark decay chain, L denotes the integrated luminosity of the data used, and ε and
A are the signal detection efficiency and the geometric and kinematic acceptance, respectively.

The expected numbers of events from different background and signal hypotheses and the
observed yields in data, after the binned maximum-likelihood fit is performed are shown in
Fig. 1 in the VR and SR for the three years of data taking. The agreement within the statistical
and systematic uncertainties between the predicted SM background and the observed data in
the VR validates the background estimation.

No significant excess is observed over the SM background in the SR. Upper limits on σW′B(W′ →
tb) at 95% CL are obtained using the asymptotic CLs method [73, 74] with an asymptotic ap-
proximation [75] of the profile likelihood.

Upper limits at 95% CL on the production cross sections times the branching fraction to a top
and a bottom quark of right- and left-handed W′ bosons including the effects of interference
with the SM are calculated after merging the data and backgrounds of all three years and are
shown in Fig. 2. There is a difference in the angular distributions of the top quark decay prod-
ucts depending on the chirality of the parent W′ boson, which leads to a difference in t tagging
efficiency. The theoretical cross section for the production of left-handed W′ bosons saturates
at high mass because of the interference with single top quark production in the SM, which
causes the signal shape to be asymmetric with a pronounced tail at low mtb . This results in
a substantial difference between the upper limits on the production cross section of left- and
right-handed W′ bosons at high mtb .

The current analysis excludes both right- and left-handed W′ bosons of masses less than 3.4 TeV
at 95% CL. The expected limits are 3.7 and 3.6 TeV for the right- and left-handed W′ bosons,
respectively. The analysis improves on the expected sensitivity over the previous results [16],
and extends the lower exclusion limit on σW′B(W′ → tb) over the explored mass spectrum
between 1.2 and 4.0 TeV. For right-handed W′ bosons, values of σW′B(W′ → tb) in the range
60–10 fb are excluded in the 1.2–4.0 TeV mass range.

9 Summary
A search has been performed for heavy W′ bosons decaying to a top and a bottom quark in the
hadronic final state using data corresponding to an integrated luminosity of 137 fb−1 collected
by the CMS experiment during the data taking period from 2016 to 2018. The analysis utilizes
top quark tagging and bottom quark tagging algorithms based on deep neural networks. No
excess above the estimated standard model background is observed. Upper limits on the pro-
duction cross section times branching fraction of a W′ boson decaying to a top and a bottom
quark are obtained at 95% confidence level for W′ boson masses in the range 1–4 TeV. Left- and
right-handed W′ bosons with masses below 3.4 TeV are excluded at 95% confidence level. The
limits provided on W′ bosons decaying to a top and a bottom quark in the all-hadronic decay
mode are the most stringent to date.
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Figure 1: The reconstructed mtb distributions in data (black points with error bars), and back-
grounds in the VR (upper row) and SR (lower row) for the data-taking periods of 2016 (left),
2017 (middle), and 2018 (right). The yield in each bin is divided by the corresponding bin
width. Distributions expected from right-handed W′ bosons of mass 2 and 3 TeV and a left-
handed W′ boson of mass 2 TeV are shown normalized to the integrated luminosity of the data
using a product of cross section and branching fraction of 1 pb. The lower panel in each plot
shows the ratio of data to the background prediction. The shaded band indicates the total un-
certainty in the estimated background, including both statistical and systematic components.
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Figure 2: Upper limits at 95% CL on the production cross section and branching fraction of a W′R
boson (upper row) and a W′L boson with the SM interference (lower row) decaying to a top and
a bottom quark, using combined 2016–2018 data and backgrounds. The observed and median
expected limits are shown with the black solid and dashed lines, respectively. The inner green
and outer yellow bands represent the 68 and 95% confidence level intervals, respectively, of the
expected limit, computed using the background-only hypothesis. The theoretical prediction
and its uncertainty due to the choice of QCD scale and PDF set are indicated by the red curve
and associated red shaded band, respectively.
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K. Lassila-Perini, S. Lehti, T. Lindén, M. Lotti, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, H. Petrow, T. Tuuva
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H. Kaveh, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, T. Lenz, J. Lidrych, K. Lipka,
W. Lohmann23, T. Madlener, R. Mankel, I.-A. Melzer-Pellmann, J. Metwally, A.B. Meyer,
M. Meyer, J. Mnich, A. Mussgiller, V. Myronenko, Y. Otarid, D. Pérez Adán, D. Pitzl,
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K. El Morabit, N. Faltermann, K. Flöh, M. Giffels, J.O. Gosewisch, A. Gottmann, F. Hartmann19,
C. Heidecker, U. Husemann, I. Katkov24, P. Keicher, R. Koppenhöfer, S. Maier, M. Metzler,
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G. Barbaglia, A. Cassesea, R. Ceccarellia ,b, V. Ciullia,b, C. Civininia, R. D’Alessandroa ,b,
F. Fioria ,b, E. Focardia ,b, G. Latinoa,b, P. Lenzia,b, M. Lizzoa ,b, M. Meschinia, S. Paolettia,
R. Seiditaa ,b, G. Sguazzonia, L. Viliania

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, D. Piccolo

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
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F. Cavallaria, M. Cipriania ,b, D. Del Rea ,b, E. Di Marcoa, M. Diemoza, E. Longoa,b, P. Meridiania,
G. Organtinia ,b, F. Pandolfia, R. Paramattia ,b, C. Quarantaa,b, S. Rahatloua,b, C. Rovellia,
F. Santanastasioa,b, L. Soffia, R. Tramontanoa,b
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Laboratório de Instrumentação e Fı́sica Experimental de Partı́culas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, A. Boletti, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo,
T. Niknejad, J. Seixas, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, D. Budkouski, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev,
V. Karjavine, A. Lanev, A. Malakhov, V. Matveev48,49, V. Palichik, V. Perelygin, M. Savina,



29

D. Seitova, V. Shalaev, S. Shmatov, S. Shulha, V. Smirnov, O. Teryaev, N. Voytishin, A. Zarubin,
I. Zhizhin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
G. Gavrilov, V. Golovtcov, Y. Ivanov, V. Kim50, E. Kuznetsova51, V. Murzin, V. Oreshkin,
I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Volkov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov,
A. Pashenkov, G. Pivovarov, D. Tlisov†, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC
‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, A. Nikitenko52, V. Popov, G. Safronov,
A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI),
Moscow, Russia
M. Chadeeva53, A. Oskin, P. Parygin, E. Popova, V. Rusinov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow,
Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin54, L. Dudko, A. Gribushin, V. Klyukhin,
N. Korneeva, I. Lokhtin, S. Obraztsov, M. Perfilov, V. Savrin, P. Volkov

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov55, T. Dimova55, L. Kardapoltsev55, I. Ovtin55, Y. Skovpen55

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’,
Protvino, Russia
I. Azhgirey, I. Bayshev, V. Kachanov, A. Kalinin, D. Konstantinov, V. Petrov, R. Ryutin, A. Sobol,
S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, V. Okhotnikov, L. Sukhikh

Tomsk State University, Tomsk, Russia
V. Borchsh, V. Ivanchenko, E. Tcherniaev

University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences,
Belgrade, Serbia
P. Adzic56, M. Dordevic, P. Milenovic, J. Milosevic, V. Milosevic
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